

specification

mailto:info@sanpark.com
http://www.sanpark.com/

content

content

introduction

By reducing the time and cost of the solutions of real life problems, information
technologies had a deep impact on the every little aspect of both our professional
and daily lives. Especially with the urge of the internet era, this impact is drastically
increasing as the solutions now became time-free and location-free (Park and Lim,
1999; Calvary et al., 2003; Rau et al., 2004; Lam and Swayne, 2001; Kim 2001).

One of the largest challenges of the IT field is the gap between the real world
systems and their representations in the computer, or to be more specific today’s
online world. Numerous professionals proposed notations, languages and methods to
provide solutions to narrow this gap (Kernighan and Ritchie, 1978; Wirth, 1971;
Gosling et al., 2005; Tom, 2001; Booch et al., 2000; Heng and Mackie, 2009; Laporti
et al., 2009; Horsburgh et al., 2009; Reinhartz-Berger and Sturm, 2009; Schwabe
and Rossi, 1998). Most of those solutions are being used by many of the IT and
related professionals today.

However, with the increasing shift of systems to the online world there still resides
a need to have a representation tool to model and convert real life systems to the
world of computers.

Considering the online world of today and the predicted integrated and semantic,
structure of tomorrow, one can easily say that this new tool

 should allow faster modeling,
 should be easy to use,
 should be able to represent every element of the real life systems,
 should be able to represent the relations between the elements of the real

life systems,
 should easily be used for modeling different systems,
 should be able to produce a representation which can be interpreted not

only by humans but also by machines,
 should be able to produce a representation which can easily be converted to

the existing or the future technologies.

Considering the above reasons and more, we propose the Modo language.

This document contains the specification of the Modo language. In this first chapter,
Introduction, the acknowledgement and the general information about the
document is mentioned.

The rest of the document contains the following chapters:

Motivation chapter covers the underlying reasons, which led us to develop Modo.

Definitions chapter covers the technical terminology and jargon that we find
compulsory to make the most use of this document.

Structure and Syntax chapter gives detailed information about the syntax of the
language using Extended Backus-Naur Form, Extended BNF (ISO/IEC 14977, 1996).
Along with the syntax, lexical sequence, constraints and rules are also described.

Elements chapter covers the element declarations and the uses of the elements in
Modo definitions.

Selectors chapter introduces selectors conceptually. Additionally selector syntax
and the uses of the selectors are described in this chapter.

Expressions chapter gives information about the expressions for operators,
constants, strings and elements.

This document specifies/contains structure and syntax of the Modo language.

This document does not specify/contain

 use cases
 system dependent elements/methods
 technology dependent elements/methods
 conversions and interpretations of Modo to other technologies

This document is intended for developers, designers, system designers and modelers
and other related professionals whose activities contain modeling of real life
systems for computer technologies.

For better understanding of this document, the audience must have experience in
the following:

 Object oriented system modeling
 Computer programming languages
 EBNF notation (ISO/IEC 14977, 1996)

The authors thank Sanpark IT & Design Co. Ltd., for maintaining the professional
environment and encouragement that resulted and catalyzed the development of
Modo. They also thank Recep Kütük from Sanpark for the Modo identity and the
document formatting.

Modo language is shaped by the ideas, practice and experience of Aykut Aydınlı and
the Sanpark crew; starting from 2005. The latest version of Modo is shaped by Aykut
Aydınlı and Doruk Eker.

This document is authored and edited by Aykut Aydınlı and Doruk Eker.

introduction

motivation

The basic idea that initiated the effort for the development of Modo was to create a
modeling tool, which is able to model a real life system, its elements and the
relations between them.

Modo focuses on the system to be modeled, as it exists. The technological
boundaries and constraints, which are only obstacles of the computer systems, are
neglected during the modeling process. The model then can be converted to the
required technologies. This conversion can be designed to catalyze any software
development process, reducing the cycle time of development/maintenance and
increasing the quality of the software.

Moreover, Modo is aimed to be a contribution for the ongoing studies for the
Semantic Web, which is considered to be the next era of online information delivery
(Berners-Lee et al., 2001). Modo models represent entities of real life systems and
the relations between them. Thus the system is modeled at the semantic level, and
more importantly this model is completely machine-readable. With the help of this
property, Modo can act as a common definition language at semantic level and help
different systems (online/offline) to be integrated.

All those properties of the language led us to show the effort to develop Modo.

motivation

definitions

This document contains technical details about Modo language. These technical
details necessitate the use of technical terminology. This chapter gives the
definitions of some of these technical terms for making the most use of this
document.

System is the real life system that is modeled using Modo.

Element is the single member of a system.

Member Element is the sub element of an element.

Modo Generator/Compiler/Interpreter is the application that can compile and
convert the Modo declarations into different technologies or formats.

Syntax is a piece of code that is sequenced together to form a meaningful Modo
sentences.

Grammar is the set of rules that are used to code Modo declarations.

definitions

structure & syntax

This chapter describes the basic structure of the Modo language. Additionally Modo
syntax is introduced in this chapter.

This section defines the Modo syntax. Besides some fundamental differences, Modo
syntax shows similarities to Cascading Style Sheets (CSS) language specified in Bos et
al. (Bos et al., 2009). The reasons for these similarities are 1) CSS provides great
ease for the definition of the elements and their properties and 2) common use of
CSS language among different disciplines, especially designers and developers.

Modo syntax is defined using Extended BNF metalanguage specified in ISO/IEC 14977
(ISO/IEC 14977, 1996). By using the Extended BNF metalanguage, syntactic sequence
of the Modo is separated into lexical units. This helps to identify every lexical unit in
a meaningful Modo sentence.

These definitions include some of the main syntactic parts of the Modo language.
For the complete list of definitions, please refer to Appendix A. Grammar.

Following example shows the declaration of an element in Modo syntax:

1 /* Company Element Declaration */

2 Company {

3 Name = String;

4 $Name = "Doe Software Inc.";

5 Founder = String;

6 $Founder = "John Doe";

7 TaxNumber = String;

8 $TaxNumber = "123456789987654321";

9 }

The example above shows the declaration of Company element. On line 1, a
descriptive comment is added to the declaration. On line 2, the declaration of the

Company element starts.

On lines 3, 5 and 7 the member elements, Name, Founder and TaxNumber of the

Company element are declared respectively. On lines 4, 6 and 8 initial values of

those member elements are assigned. Please note that the dollar symbol "$"
preceding the member element name refers to the value of that member element.

Finally on line 9, Company element declaration ends with end declaration

symbol "}".

Note: The above example assumes that the element String has already

been defined.

For better understanding, Modo syntax is separated into tokens at lexical level. A
Modo declaration consists of a sequence of these tokens.

Following is the general Extended BNF notation of the Modo:

modo = {

 directive

 | rule

 | declaration

 | comment

};

As you can see above, Modo definition consists of directives, rules, declarations and
comments. Followings are the Extended BNF notations of each token:

(* Directive Definition *)

directive = {blank},

 at symbol,

 identifier,

 {blank}-,

 expression,

 {blank},

 end sentence symbol;

(* Rule Definition *)

rule = {blank},

 at symbol,

 {blank},

 start group symbol,

 {blank},

 expression,

 {blank},

 end group symbol,

 {blank},

 start declaration symbol,

 {blank},

 modo,

 {blank},

 end declaration symbol;

(* Comment Definition *)

comment = delimited comment

 | single line comment;

(* Declaration Definition *)

declaration = {

 assignment

 | basic declaration

 | extended declaration

};

Characters (The Unicode Standard, 2003), letters, numerals, symbols and operators
used in Modo syntax are defined as follows:

letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H"

 | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P"

 | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X"

 | "Y" | "Z" | "a" | "b" | "c" | "d" | "e" | "f"

 | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n"

 | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v"

 | "w" | "x" | "y" | "z";

character = any Unicode character;

whitespace = {

 space character

 | tab character

 | line feed character

 | carriage return character

 | form feed character

};

new line = carriage return character

 | line feed character

 | next line character

 | line separator character

 | paragraph separator character;

space character = " ";

tab character =

 ? The Unicode Standard Tab Character (U+0009) ? ;

line feed character =

 ? The Unicode Standard Line Feed Character (U+000A) ? ;

carriage return character =

 ? The Unicode Standard

 Carriage Return Character (U+000D) ? ;

form feed character =

 ? The Unicode Standard Form Feed Character (U+000C) ? ;

next line character =

 ? The Unicode Standard Next Line Character (U+0085) ? ;

line separator character =

 ? The Unicode Standard

 Line Separator Character (U+2028) ? ;

paragraph separator character =

 ? The Unicode Standard

 Paragraph Separator Character (U+2029) ? ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"

 | "8" | "9";

at symbol = "@";

assignment symbol = "=";

end sentence symbol = ";";

start group symbol = "(";

end group symbol = ")";

start declaration symbol = "{";

end declaration symbol = "}";

backslash symbol = "\";

start attribute selector symbol = "[";

end attribute selector symbol = "]";

start delimited comment symbol = "/*";

end delimited comment symbol = "*/";

start single line comment symbol = "//";

dot symbol = ".";

comma symbol = ",";

underscore symbol = "_";

hyphens symbol = "-";

escaped single quote symbol = "\’";

escaped double quote symbol = ‘\"’;

single quote symbol = "’";

double quote symbol = ‘"’;

increment operator = "++";

decrement operator = "--";

unary operator = "+" | "-" | "!" | "~"

 | increment operator

 | decrement operator;

operator = "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "<"

 | ">" | "<=" | ">=" | "==" | "!=" | "&" | "^" | "|"

 | "&&" | "||";

unary selector operator = "$", ".", "#", "?", " ";

selector operator = ">", "<", "+", "-", "~", "^", ":",

 "::", "%", "&", "|", "\", "/";

selector expression operator = "*" | "/" | "%" | "+" | "-"

 | "<<" | ">>" | "<" | ">" | "=" | "&" | "^" | "|"

 | "<=" | ">=" | "==" | "!=" | "*=" | "/=" | "%="

 | "+=" | "-=" | "&=" | "^=" | "|=" | "$=" | "~="

 | ".=" | "#=" | "?=" | ":=" | "&&" | "||";

universal selector = "*";

Additionally there are some extra tokens used in Modo syntax. For the sake of
continuity, only main syntactic parts are shown here. Please refer to Appendix A.
Grammar for complete list of tokens.

In Modo syntax, characters of any kind including whitespace are not allowed
between syntactic parts.

Only the space character, tab character, line feed character,

carriage return character and form feed character can occur in

whitespace.

Modo syntax is case-insensitive. Elements and member elements declared in Modo
can be considered as case-insensitive.

Following is the Extended BNF notation of identifier and lhs identifier:

identifier = {letter | underscore symbol}-,

 {

 digit

 | letter

 | underscore symbol

 };

The identifier definition above shows that the identifier starts with letter

or underscore symbol "_" and can continue with digit, letter or

underscore symbol "_".

lhs identifier = {

 letter

 | underscore symbol

 | hyphens symbol

 }-,

 {

 digit

 | letter

 | underscore symbol

 | hyphens symbol

 };

The left-hand side selector (lhs) identifier shows that lhs identifier starts with

either letter, underscore symbol "_" or hyphens symbol "-".

1 /* Company Element Declaration */

2 Company {

3 Name = String;

4 $Name = "Doe\’s Software Inc.";

5 Founder = String;

6 $Founder = "John Doe";

7 TaxNumber = String;

8 $TaxNumber = "123456789987654321";

9 }

The example above shows the declaration of Company element. In this declaration

Company, Name, Founder and TaxNumber are the left-hand side identifiers.

Additionally, there is an alternative use of backslash symbol "\" in strings.
Backslash symbol is used to print single and double quote symbols in string values.
Also for printing backslash symbol in string values, one must specify two backslash

symbols "\\" consecutively.

Following is the Extended BNF notation of escaped single quote symbol and

escaped double quote symbol:

escaped single quote symbol = "\’";

escaped double quote symbol = ‘\"’;

In addition to that, string, single quote escaped string and double

quote escaped string definitions are as follows:

string = (

 single quote symbol,

 single quote escaped string,

 single quote symbol

)

 |

 (

 double quote symbol,

 double quote escaped string,

 double quote symbol

);

single quote escaped string = {

 (any Unicode character – single quote symbol)

 | escaped single quote symbol

};

double quote escaped string = {

 (any Unicode character – double quote symbol)

 | escaped double quote symbol

};

Directives are the instructions directly related with the Modo
generators/compilers/interpreters. They are not a part of the system declared in

Modo. Directives start with at symbol "@" and continue with identifier and

expression. Finally, directives end with end sentence symbol ";".

(* Directive Definition *)

directive = {blank},

 at symbol,

 identifier,

 {blank}-,

 expression,

 {blank},

 end sentence symbol;

In Modo syntax, Rules play an important role of representing the different states of
a system. In real life, the elements of a system might contain different properties or
values for different states of the system. When modeling the system, those different
states, values and properties must be included in the model. In Modo syntax, those
different properties and values are reflected using the Rules.

Declarations, types and the values of the elements can be specified depending on
rules. With the help of rules, values and properties of the system can be changed or

set depending on one or more conditions. Rules start with at symbol "@".

There are two types of rules: 1) Rule blocks and 2) inline rules. Following is the
Extended BNF notation of rules (rule blocks) and inline rules:

rule = {blank},

 at symbol,

 {blank},

 start group symbol,

 {blank},

 expression,

 {blank},

 end group symbol,

 {blank},

 start declaration symbol,

 {blank},

 modo,

 {blank},

 end declaration symbol;

The rule definition above shows that rule starts with at symbol "@", and

continues with start group symbol, expression and end group symbol.

After rule expression is specified, rule specific declaration starts with start

declaration symbol. Any meaningful Modo declaration can be placed between

declaration symbols. Finally, rule ends with end declaration symbol.

inline rule = {blank},

 at symbol,

 {blank},

 start group symbol,

 {blank},

 expression,

 {blank},

 end group symbol;

Similarly, the inline rule starts with at symbol "@" and continues with start

group symbol, expression and end group symbol.

Following example shows the use of rules in Modo declarations:

1 Company {

2 Name = String;

3 $Name = "Doe Software Inc.";

4 $Name = "DOE Corp." @ ($CurrentYear > 2008);

5 Founder = String;

6 $Founder = "John Doe";

7 TaxNumber = String;

8 $TaxNumber = "123456789987654321";

9 }

The example above shows the use of inline rules. On line 2, the Name member

element of the Company element is defined and on line 3, it is assigned an initial

value. On line 4, another value is assigned to the Name element, but this time

depending on the rule ($CurrentYear > 2008).

Imagine a scenario where the company’s name was changed to "DOE Corp." in the

year 2008. Therefore, once the value of the CurrentYear is greater than 2008 the

value of the Name element is "DOE Corp.". In other cases, the value of the Name

element is "Doe Software Co.,Ltd.".

1 Company {

2 Name = String;

3 Founder = String;

4 TaxNumber = String;

5 $Name = "Doe Software Inc.";

6 @ ($CurrentYear > 2008) {

7 $Name = "DOE Corp.";

8 }

9 $Founder = "John Doe";

10 $TaxNumber = "123456789987654321";

11 }

The example above shows the use of rule blocks. On line 6, rule block starts with at

symbol "@". On line 7, a new value is assigned to the Name element. Finally, rule

block ends with end declaration symbol on line 8.

One possible implementation of Rules in Modo syntax is to define a value or
property of elements that does not change in any state of the system.

For the previous scenario, assume that the tax number of the company is always the

same. Therefore, value of the TaxNumber element never changes. The following
example shows the Modo syntax, which defines an everlasting rule.

1 Company {

2 Name = String;

3 Founder = String;

4 TaxNumber = String;

5 $Name = "Doe Software Inc.";

6 $Founder = "John Doe";

7 $TaxNumber = "123456789987654321" @ (1);

8 }

In the above example, the elements are defined similarly to the previous example.

However, when assigning values a rule is defined for the value of the TaxNumber

element. On line 7, after the value is assigned to the TaxNumber element the rule

(1) is defined. This rule indicates that, for all states of the system the value of the

TaxNumber element is "123456789987654321".

Note: The above examples assume that the member element CurrentYear

and element String have already been declared.

Blocks are used for element and rule declarations. In Modo syntax, blocks start with

start declaration symbol "{" and end with end declaration symbol

"}" (Appendix A. Grammar). Every start declaration symbol must end with

end declaration symbol.

Similarly, in string values if a string starts with single quote symbol, it must

end with single quote symbol. In addition, if a string starts with double

quote symbol, it must end with double quote symbol. Every expression

that starts with start group symbol "(" likewise ends with end group

symbol ")".

Modo syntax provides some pattern-matching rules for element and member
element declarations. These pattern-matching rules are called “Selectors”.

Modo syntax introduces selectors conceptually. For further information, please refer
to 6. Selectors.

Elements are the basic Modo structures that define real life entities. Elements can
be declared by single line definitions or block declarations.

Following example shows the declaration of Company element.

1 /* Company Element Declaration */

2 Company {

3 Name = String;

4 $Name = "Doe Software Inc.";

5 Founder = String;

6 $Founder = "John Doe";

7 TaxNumber = String;

8 $TaxNumber = "123456789987654321";

9 }

Elements can be declared by extending built-in or previously declared elements.

Following example shows the declaration of Worker and Developer elements:

1 Worker {

2 FirstName = String;

3 LastName = String;

4 Department = String;

5 }

The example above shows the declaration of Worker element. On line 1, "Worker"

identifier is specified and declaration of the Worker element starts with start

declaration symbol. On line 2, FirstName member element is defined. On line

3, LastName member element is defined and on line 4, Department member

element is defined. Finally, element declaration ends with end declaration

symbol.

Below is the declaration of the Developer element, which is an extension of the

Worker element.

1 Developer = Worker {

2 $Department = "Software Development";

3 }

The example above extends the Worker declaration. On line 1, Developer

element is declared extending the Worker element. Additionally on line 2, a

specific value is assigned to the Department element.

There are three types of Modo element declarations:
 Assignments
 Basic Declarations
 Extended Declarations

Assignments are one-line declarations where the assignment symbol "=" is
used and values are assigned to the elements and member elements.

Basic declarations are the typical element declarations as blocks.

Extended declarations are the declarations that extend built-in or previously
declared elements.

For further information about declarations, please refer to 5.1. Declarations.

Modo syntax allows using expressions for assignments. Following example shows the
use of expression in assignments:

1 Worker {

2 $FirstName = "John";

3 $LastName = "Doe";

4 $FullName = ($FirstName + " " + $LastName);

5 }

The example above shows the declaration of Worker element. On line 4, the value

of the FullName member element is specified by an expression. According to this

expression, value of the FullName member element is composed of the value of

the FirstName member element, the space character " " and the value of

the LastName member element.

Modo declarations specify the state of the system for the given time periods. This
nature of the Modo necessitates that the assignments must be valid for the given

time periods. Therefore, for the above example, when the FirstName attribute

value changes, FullName attribute value must be recalculated and updated by the
generators/compilers/interpreters using this Modo model.

For further information, please refer to 7.Expressions chapter.

There are two types of comments:
 Delimited Comments
 Single Line Comments

comment = delimited comment

 | single line comment;

Delimited comments start with start delimited comment symbol "/*" and

end with end delimited comment symbol "*/".

delimited comment = {blank},

 start delimited comment symbol,

 ({character} – end delimited comment symbol),

 end delimited comment symbol;

Single line comments start with start single line comment symbol "//"

and end with any kind of new line character.

single line comment = {blank},

 start single line comment symbol,

 ({character} – new line),

 new line;

Comments include descriptions and notes about Modo declarations. Modo
generators/compilers/interpreters ignore comments during generation, compiling
and interpreting process. Comments are useful for making code more readable.

1 /* Beginning of Company element declaration */

2 Company {

3 /* Name member element definition */

4 Name = String;

5 /* Value assigned to Name element */

6 $Name = "Doe Software Inc.";

7 /* Founder member element definition */

8 Founder = String;

9 /* Value assigned to Founder element */

10 $Founder = "John Doe";

11 /* TaxNumber member element definition */

12 TaxNumber = String;

13 /* Value assigned to TaxNumber element */

14 $TaxNumber = "123456789987654321";

15 }

16 /* End of Company element declaration */

In the example above, comments are used on lines 1, 3, 5, 7, 9, 11, 13 and 16.

There are two types of values in Modo syntax.
 Numeric values (integers and real numbers)
 Strings

All the element or member element values must be specified using either numeric
values or strings.

Integers and real numbers are formed by bringing digits [0-9] together.

Following is the Extended BNF notation of integer and constant (real number)
syntax:

integer = "0" | (digit - "0", {digit});

constant = integer,

 [

 dot symbol,

 {digit}-

];

The syntax above shows that constant (real number) values include integer values.

Decimal digits are separated using dot symbol ".".

Except numerals, all the values in Modo declarations must be specified as strings.

Strings start with single quote symbol or double quote symbol and end

with single quote symbol or double quote symbol respectively. Following
examples show the different use of strings:

1 A = "This is double quote string.";

2 A = 'This is single quote string.';

3 A = "This is double quote \" escaped string";

4 A = 'This is single quote \' escaped string';

5 A = 'This is a \'string\'';

6 A = "This is a \"string\"";

structure & syntax

elements

Modo is used for describing systems. For better understanding, the system, its
subsystems, its super system (the system that encompasses the system that is in
focus), its environment and context can be separated into meaningful pieces. This
approach has different names for different disciplines (e.g. Systems approach,
object-oriented design). This approach is handy for analyzing and modeling systems.
Sharing the same point of view, Modo offers separation of systems into signicifant
unique pieces for modeling. These pieces are called “Elements” in Modo syntax. This
chapter gives information about the declaration and usage of elements in Modo
syntax.

Declarations are used for representing the real-life system entities as Modo
elements. There are three types of declarations: 1) Assignments, 2) basic
declarations and 3) extended declarations.

Following sections give detailed information about declarations.

Real-Life entities can have properties and sub elements. In Modo, these properties
and sub elements are called “Member Elements”.

Declaration of the elements can be made by assigning values to the member

elements. In the following example assignments are used to declare the Company
element.

1 Company Name = String;

2 Company Founder = String;

3 Company TaxNumber = String;

4 Company $Name = "Doe Software Inc.";

5 Company $Founder = "John Doe";

6 Company $TaxNumber = "123456789987654321";

The example above shows the declaration of Company element. On line 1, Name

attribute is defined and on line 4 the value "Doe Software Co.,Ltd." is

assigned. On line 2, Founder attribute is defined and on line 5, the value "John

Doe" is assigned. Finally, on line 3, TaxNumber attribute is defined and on line 6,

the value "123456789987654321" is assigned.

Basic declarations are the typical element declarations in Modo syntax.

Following example shows the basic declaration of Company element:

1 Company {

2 Name = String;

3 $Name = "Doe Software Inc.";

4 Founder = String;

5 $Founder = "John Doe";

6 TaxNumber = String;

7 $TaxNumber = "123456789987654321";

8 }

The example above shows the declaration of Company element. Declaration of the

Company element starts on line 1. Company element has three attributes called

Name, Founder and TaxNumber. These attributes are defined on lines 2, 4 and 6

respectively; and their values are assigned on lines 3, 5, and 7. Finally, Company

element declaration ends with end declaration symbol on line 8.

Element declarations can be made by extending built-in or previously defined
elements. The extended element carries all the properties of the parent element.
Additionally, extended element can have its original member elements.

Following are the basic declarations of the Worker element and the Developer

element which extends the Worker element:

1 Worker {

2 Name = String;

3 Surname = String;

4 Department = String;

5 }

The above example is the basic declaration of the Worker element. On line 1, the

declaration of the element starts. On lines 2, 3 and 4, the member elements Name,

Surname and Department are defined respectively.

1 Developer = Worker {

2 $Department = "Software Development";

3 Expertise = String;

4 }

On line 1, Developer element is declared extending the Worker element. With

this assignment, extended declaration of the Developer element starts. On line 2,

a value, "Software Development", is assigned to the Department element. In

the above example the Department element belongs to the Worker element. So

in line 2, the Developer element extends the Worker element via assigning a
value to an existing member element. However in line 3, a new member element

Expertise, which belongs only to Developer element, is defined. So this time,

the Worker element is extended via defining a new member element.

Declaration process of the Modo elements is not limited to specifying the member
elements, but it also includes relating them with each other and other Modo
elements. This section gives details about using elements.

In Modo syntax, all the properties/attributes of an element are also elements, which
are called member elements. Member element declaration starting without any
preceding characters, defines the type of the member element. The type of the
member elements can be a built-in or previously declared element.

When the definition of the member element starts with the dollar symbol "$",
this assignment specifies the initial value of this element in the system. If the initial
value is assigned with a rule, then that value will be condition dependent.

Following is the Modo declaration of the Company element:

1 Company {

2 Name = String;

3 $Name = "Doe Software Inc.";

4 $Name = "DOE Corp." @ ($CurrentYear > 2008);

5 Founder = String;

6 $Founder = "John Doe";

7 TaxNumber = String;

8 $TaxNumber = "123456789987654321";

9 }

In the above example, on lines 2, 5 and 7, the member elements Name, Founder

and TaxNumber are declared respectively. Their types are also specified as

String, which is another built-in or previously declared element. On lines, 3, 6 and

8 initial values are assigned with the help of dollar symbol "$". On line 4, a

different value is assigned to the Name member element, but this time depending

on a rule ($CurrentYear > 2008).

Modo syntax also allows nested declarations where the member elements can
extend an existing element. This nested declaration is one of the ways to define the
relationship between the elements.

Following examples shows the nested declaration of member elements:

1 Worker {

2 Name = String;

3 Surname = String;

4 Department = String;

5 }

The example above shows the declaration of the Worker element. On lines 2, 3 and

4, the member elements Name, Surname and Department are declared
respectively.

1 Department {

2 DepartmentName = String;

3 Manager = Worker{

4 $Department = $DepartmentName;

5 }

6 }

The above example shows the declaration of the Department element. On line 2,

DepartmentName member element is declared. On line 3, member element

Manager is declared extending the element Worker. On line 4, the value of the

Department member element of the Manager element is assigned to the value of

the DepartmentName member element.

The value of built-in elements, previously declared elements or member elements
could be used while declaring the member elements.

Following examples give details about accessing member elements:

1 Worker {

2 FirstName = String;

3 LastName = String;

4 FullName = String;

5 $FullName = ($FirstName + " " + $LastName);

6 }

The example above shows the declaration of Worker element. On line 5, the value

of the FullName member element is assigned using an expression that accesses the

values of the FirstName and LastName member elements of the Worker element.

1 Worker {

2 $FirstName = "";

3 $LastName = "";

4 $FullName = ($FirstName + " " + $LastName);

5 }

6

7 Department {

8 DepartmentName = String;

9 Manager = Worker{

10 Title = String;

11 $Title = "Manager " + $FullName;

12 }

13 }

Above is an example of accessing element attributes in extended declaration. On

line 11, Title attribute is assigned a value using an expression which accesses

FullName attribute of the Worker element.

Modo syntax does not allow the definition of user defined functions and member
methods. However, Modo generators/compilers/interpreters can provide some built-
in functions and member methods.

This section gives information about using built-in functions and member methods in
Modo declarations.

Following example shows the use of member methods in Modo declarations:

1 Worker {

2 FirstName = String;

3 LastName = String;

4 FullName = String;

5 $FullName = ($FirstName + " " + $LastName);

6

7 /* FormatCurrency function takes 2 parameters

8 * param1: Amount

9 * param2: Decimal Count

10 */

11 Salary = String;

12 $Salary = FormatCurrency(1500, 2);

13 }

The example above shows the use of member methods in Modo declarations. On line

12, the value of the Salary member element is specified by the return value of

FormatCurrency function. FormatCurrency function takes two parameters: 1)

Currency amount and 2) decimal count. The value of the Salary member element

becomes "1500.00".

Warning: FormatCurrency function used in the example above only shows

the use of member methods. This function is not a part of Modo syntax.

Note: The above examples assume that the element String has already

been declared.

elements

selectors

Selectors provide control over elements. Selectors can define the scope of the
declaration.

This chapter gives information about the uses of selectors over elements.

There are two types of selectors:
 Left-hand side selectors
 Right-hand side selectors

Following is the Extended BNF notation of left-hand and right-hand side selectors:

lhs selector = (

 {blank},

 universal selector | selector operand,

 {blank},

 {

 selector operator,

 {blank},

 selector operand

 }

),

 {

 {blank},

 comma symbol,

 {blank},

 lhs selector

 };

Left-hand side selectors have more complex structure than right-hand side

selectors. The Extended BNF notation above shows that lhs selector consists of

a selector operand or a universal selector, and a selector

operator. Additionally, it is possible to specify more than one lhs selector by

separating with comma symbol ",".

rhs selector = {blank},

 [unary selector operator],

 identifier,

 {rhs selector};

The Extended BNF notation above shows that rhs selector consists of optional

unary selector operator and an identifier. In addition to that, it is

possible to specify more than one rhs selector.

In Modo selector syntax, "*" symbol plays an important role. This symbol is called

universal selector and used to match any single element. As specified in

Appendix A. Grammar, universal selector can only be used in left-hand side
selectors. The main reason for this convention is, right-hand side selectors are not
allowed to address more than one element.

Modo syntax provides grouping for left-hand side selectors. Left-hand side selectors
may specify more than one element at a time. This is useful for declaring identical
elements.

Warning: Grouping can only be used on left-hand side selectors. Right-hand

side selectors have no grouping support.

Following example shows the use of grouping:

1 Developer, Designer = Worker {

2 FirstName = String;

3 LastName = String;

4 }

The example above shows the use of grouping. Both Developer and Designer

elements are of type the Worker element. These elements are separated with

comma symbol.

There are two types of selector operators:
 Unary selector operators
 Binary selector operators

This section gives information about the use of these selector operators.

Unary selector operators are the selector operators that take one selector operand.

Following is the Extended BNF notation of the unary selector operators:

unary selector operator = "$", ".", "#", "?", " ";

Following examples shows the use of unary selector operators:

 .Developer { }

 #Developer { }

 ?Developer { }

 Developer $Name = "";

Warning: The meaning and the use of these selector operators may be

interpreted differently by different Modo generators/compilers/interpreters.

Binary selector operators are the selector operators that take two selector
operands.

Following is the Extended BNF notation of the binary selector operators:

selector operator = ">", "<", "+", "-", "~", "^", ":",

 "::", "%", "&", "|", "\", "/";

Following examples shows the use of binary selector operators:

 Developer > $Name = "";

 Developer < $Name = "";

 Developer + Designer { }

 Developer – Designer { }

 Developer ~ Designer { }

 Developer ^ Designer { }

 Developer % Designer { }

 Developer & Designer { }

 Developer | Designer { }

 Developer / Designer { }

Warning: The meaning and the use of these selector operators may be

interpreted differently by different Modo generators/compilers/interpreters.

Selector operands are the components of the selection operation affected by binary
and unary selector operators.

Following is the Extended BNF notation of selector operand in Modo syntax:

selector operand = {blank},

 [

 [unary selector operator],

 lhs identifier

],

 {blank},

 [

 (

 start group symbol,

 [

 selector expression,

 {

 {blank},

 comma symbol,

 {blank},

 selector expression

 }

],

 {blank},

 end group symbol

)

 |

 (

 start attribute selector symbol,

 selector expression,

 {

 {blank},

 comma symbol,

 {blank},

 selector expression

 },

 {blank},

 end attribute selector symbol

)

],

 {selector operand};

The notation above shows that selector operands start with optional unary

selector operator and lhs identifier. It is possible to specify a selector

start with either start group symbol "(" or start attribute selector

symbol "[". If a selector starts with start group symbol, it must end with end

group symbol. Similarly, if a selector starts with start attribute selector

symbol, it must end with end attribute selector symbol.

By the help of the selector operand expressions, not only the elements but also its
member elements, member element values and member methods can be used in the
left-hand side selectors.

Following is the Extended BNF notation of selector expression in Modo syntax:

selector expression = {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {

 {blank},

 selector expression operator,

 {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {blank},

 {end group symbol},

 },

 {blank},

 {end group symbol};

The selector expression notation above shows that selector expression

and expression notation have several tokens in common except the selector

expression operator.

Following is the Extended BNF notation of selector expression operator:

selector expression operator = "*" | "/" | "%" | "+" | "-"

 | "<<" | ">>" | "<" | ">" | "=" | "&" | "^" | "|"

 | "<=" | ">=" | "==" | "!=" | "*=" | "/=" | "%="

 | "+=" | "-=" | "&=" | "^=" | "|=" | "$=" | "~="

 | ".=" | "#=" | "?=" | ":=" | "&&" | "||";

 selectors

expressions

An expression can be defined as a sequence of operands and operators (ECMA-334,
2006). In Modo syntax, expressions are used for the definition of elements and
member elements.

Following is the Extended BNF notation of the expression in Modo syntax:

expression = {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {

 {blank},

 operator,

 {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {blank},

 {end group symbol},

 },

 {blank},

 {end group symbol};

The expression definition above shows that expressions start with optional start

group symbol, "(". An operand or expression follows this symbol. Then

optional operator and operand/expression follow. Finally expression syntax

ends with optional end group symbol, ")".

As mentioned in expression syntax, expressions are composed of operands and
operators. Operators specify the operations that will be applied to the operands
(ECMA-334, 2006).

In Modo syntax, there are two types of operators: 1) Binary operators and 2) unary
operators.

Unary operators take one operand (e.g. -A, A++).

Binary operators take two operands (e.g. A + B).

Following is the Extended BNF notation of unary operator and operator (Binary
operator) in Modo syntax:

unary operator = "+" | "-" | "!" | "~"

 | increment operator

 | decrement operator;

operator = "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "<"

 | ">" | "<=" | ">=" | "==" | "!=" | "&" | "^" | "|"

 | "&&" | "||";

Expressions are evaluated from left to right. Operator precedence is the key factor
that determines which operations will be applied to which operands.

Following table lists the precedence of the operators:

Operator Precedence

 Category Operators

1 Unary operators + - ! ~ ++ --

2 Multiplication operators * / %

3 Addition operators + -

4 Shifting operators << >>

5 Relational operators < > <= =>

6 Equality operators == !=

7 Logical AND operator &

8 Logical XOR operator ^

9 Logical OR operator |

10 Conditional AND operator &&

11 Conditional OR operator ||

First column specifies the priority of the operator. Unary operators have the highest
priority (1) and conditional OR operator has the lowest (11) one. Second column
specifies the category of the operator. Finally, third column lists the operators.

Unary operators have the highest priority. These operators consist of 1) unary plus
operator, 2) unary minus operator, 3) negation operator, 4) bitwise complement
operator and 5) increment and decrement operator:

Unary plus operator is used to form an operation like +A. This operation results
simply the value of the operand.

Unary minus operator is used to form an operation like -A. This operation results

the multiplication of the operand by (-1).

Negation operator is used to form an operation like !A. This operation results the
logical negative value of the operand.

Bitwise complement operator is used to form an operation like ~A. This operation
results the complement of the operand.

Increment and decrement operators is used to form an operation like ++A, --A,

A++ or A--. Increment operator (++A or A++) increases the operand value by one.

Similarly decrement operator (--A or A--) decreases the operand value by one.

Evaluating expressions from left to right can yield different results for ++A and A++.

One must remember that, the operation ++A is calculated before the A++
operation.

Multiplication operators have second highest priority. Multiplication operators
consist of 1) multiplication operator, 2) division operator and 3) remainder operator:

Multiplication operator is used to form an operation like A * B. This operation

results the multiplication of the operand A by B.

Division operator is used to form an operation like A / B. This operation results

the division of the operand A by B.

Remainder operator is used to form an operation like A % B. This operation results

the remainder of the division of the operand A by B.

Addition operators consist of 1) addition operator and 2) subtraction operator:

Addition operator is used to form an operation like A + B. This operation results

the addition of the operands A and B.

Subtraction operator is used to form an operation like A – B. This operation

results the subtraction of the operand B from A.

"<<" and ">>" symbols are used for bit shifting operations. Shifting operators
consists of 1) left-shifting operator and 2) right shifting operator:

Left-shifting operator is used to form an operation like A << 5. The A << 5

operation yields the 5 bits left-shifted value of the operand A.

Right-shifting operator is used to form an operation like A >> 5. The A >> 5

operation yields the 5 bits right-shifted value of the operand A.

"<", ">", "<=" ve ">=" symbols are used for relational operations. Relational
operators consist of 1) “less-than” operator, 2) “greater than” operator, 3) “less
than or equal to” operator and 4) “greater than or equal to” operator:

“Less than” operator is used to form an operation like A < B. If the value of the

operand A, is less than the value of the operand B, A < B operation yields the

logical true value. If the value of the operand A, is greater than or equal to the

value of the operand B, A < B operation yields the logical false value.

“Greater than” operator is used to form an operation like A > B. If the value of

the operand A, is greater than the value of the operand B, A > B operation yields

the logical true value. If the value of the operand A, is less than or equal to the

value of the operand B, A > B operation yields the logical false value.

“Less than or equal to” operator is used to form an operation like A <= B. If the

value of the operand A, is less than or equal to the value of the operand B, A <= B

operation yields the logical true value. If the value of the operand A is greater than

the value of the operand B, A <= B operation yields the logical false value.

“Greater than or equal to” operator is used to form an operation like A >= B. If

the value of the operand A is greater than or equal to the value of the operand B, A

>= B operation yields the logical true value. If the value of the operand A is less

than the value of the operand B, A >= B operation yields the logical false value.

"==" and "!=" operators are used for equality operations. Equality operators
consists of 1) “equal to” operator and 2) “not equal to” operator.

“Equal to” operator is used to form an operation like A == B. If the value of the

operand A is equal to the value of the operand B, A == B operation yields the

logical true value.

“Not equal to” operator is used to form an operation like A != B. The A != B

operation is logically negative to the operation A == B. If the value of the operand

A is not equal to the value of the operand B, A != B operation yields the logical

true value.

Logical AND operator is used to form an operation like A & B. This operation results

the bitwise logical AND of the operands A and B.

Logical XOR operator is used to form an operation like A ^ B. This operation results

the bitwise logical exclusive OR of the operands A and B.

Logical OR operator is used to form an operation like A | B. This operation results

the bitwise logical OR of the operands A and B.

Conditional AND operator is used to form an operation like A && B. This operation

results the coditional AND of the operands A and B.

Conditional OR operator is used to form an operation like A || B. This operation

results the conditional OR of the operands A and B.

Constant numeric values and strings can be used as operands in expressions.

Following is the Extended BNF notation of constant and string in Modo syntax:

constant = integer,

 [

 dot symbol,

 {digit}-

];

The constant definition above shows that only the numeric values are considered

as constants. A constant can be integer or real number. Decimal part of the

number starts with dot symbol ".". Just like integer and real number which are

numeric constants, string is the alphanumeric constant.

string = (

 single quote symbol,

 single quote escaped string,

 single quote symbol

)

 |

 (

 double quote symbol,

 double quote escaped string,

 double quote symbol

);

The string definition above shows that strings can start with single quote

symbol ' or double quote symbol ".

Warning: If a string starts with single quote symbol, it must end with

single quote symbol. In addition, if a string starts with double quote

symbol, it must end with double quote symbol.

Elements and member elements can be considered as operands in Modo expressions.

For further information about elements and member elements, please refer to 5.2.
Using elements.

Unlike C, C++, C#, Java etc., function and/or method definition is not allowed in
Modo syntax. Modo represents and forms the system and its states for the given time
periods and for the given set of rules. Nevertheless, there can be built-in elements,
functions and member methods defined in Modo language references specific for
certain generators/compilers/interpreters. These built-in elements, functions and
member methods can also be considered as operands in Modo expressions.
expressions

grammar

(**

 * MODO LANGUAGE DEFINITION

 * -------------------------

 * This chapter defines Modo language syntax using

 * Extended BNF metalanguage.

 * There are three parts in this definition:

 * (1) Letters, characters, digits, symbols and operators

 * (2) Identifier, expression and other lexical units

 * (3) Final Modo definition

 *

 *)

(**

 * MODO LANGUAGE DEFINITION Part I

 * --------------------------------

 * Letters, characters, digits, symbols and operators

 *)

letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H"

 | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P"

 | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X"

 | "Y" | "Z" | "a" | "b" | "c" | "d" | "e" | "f"

 | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n"

 | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v"

 | "w" | "x" | "y" | "z";

character = any Unicode character;

whitespace = {

 space character

 | tab character

 | line feed character

 | carriage return character

 | form feed character

};

new line = carriage return character

 | line feed character

 | next line character

 | line separator character

 | paragraph separator character;

space character = " ";

tab character =

 ? The Unicode Standard Tab Character (U+0009) ? ;

line feed character =

 ? The Unicode Standard Line Feed Character (U+000A) ? ;

carriage return character =

 ? The Unicode Standard

 Carriage Return Character (U+000D) ? ;

form feed character =

 ? The Unicode Standard Form Feed Character (U+000C) ? ;

next line character =

 ? The Unicode Standard Next Line Character (U+0085) ? ;

line separator character =

 ? The Unicode Standard

 Line Separator Character (U+2028) ? ;

paragraph separator character =

 ? The Unicode Standard

 Paragraph Separator Character (U+2029) ? ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"

 | "8" | "9";

at symbol = "@";

assignment symbol = "=";

end sentence symbol = ";";

start group symbol = "(";

end group symbol = ")";

start declaration symbol = "{";

end declaration symbol = "}";

backslash symbol = "\";

start attribute selector symbol = "[";

end attribute selector symbol = "]";

start delimited comment symbol = "/*";

end delimited comment symbol = "*/";

start single line comment symbol = "//";

dot symbol = ".";

comma symbol = ",";

underscore symbol = "_";

hyphens symbol = "-";

escaped single quote symbol = "\’";

escaped double quote symbol = ‘\"’;

single quote symbol = "’";

double quote symbol = ‘"’;

increment operator = "++";

decrement operator = "--";

unary operator = "+" | "-" | "!" | "~"

 | increment operator

 | decrement operator;

operator = "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "<"

 | ">" | "<=" | ">=" | "==" | "!=" | "&" | "^" | "|"

 | "&&" | "||";

unary selector operator = "$", ".", "#", "?", " ";

selector operator = ">", "<", "+", "-", "~", "^", ":",

 "::", "%", "&", "|", "\", "/";

selector expression operator = "*" | "/" | "%" | "+" | "-"

 | "<<" | ">>" | "<" | ">" | "=" | "&" | "^" | "|"

 | "<=" | ">=" | "==" | "!=" | "*=" | "/=" | "%="

 | "+=" | "-=" | "&=" | "^=" | "|=" | "$=" | "~="

 | ".=" | "#=" | "?=" | ":=" | "&&" | "||";

universal selector = "*";

(**

 * MODO LANGUAGE DEFINITION Part II

 * ---------------------------------

 * Identifier, expression and other lexical units

 *)

(**

 * Directive Definition

 *)

directive = {blank},

 at symbol,

 identifier,

 {blank}-,

 expression,

 {blank},

 end sentence symbol;

(**

 * Rule Definition

 *)

rule = {blank},

 at symbol,

 {blank},

 start group symbol,

 {blank},

 expression,

 {blank},

 end group symbol,

 {blank},

 start declaration symbol,

 {blank},

 modo,

 {blank},

 end declaration symbol;

inline rule = {blank},

 at symbol,

 {blank},

 start group symbol,

 {blank},

 expression,

 {blank},

 end group symbol;

(**

 * Declaration Definition

 *)

declaration = {

 assignment

 | basic declaration

 | extended declaration

};

(**

 * Comment Definition

 *)

comment = delimited comment

 | single line comment;

delimited comment = {blank},

 start delimited comment symbol,

 ({character} – end delimited comment symbol),

 end delimited comment symbol;

single line comment = {blank},

 start single line comment symbol,

 ({character} – new line),

 new line;

blank = whitespace | comment;

(**

 * Other lexical units

 *)

string = (

 single quote symbol,

 single quote escaped string,

 single quote symbol

)

 |

 (

 double quote symbol,

 double quote escaped string,

 double quote symbol

);

single quote escaped string = {

 (any Unicode character – single quote symbol)

 | escaped single quote symbol

};

double quote escaped string = {

 (any Unicode character – double quote symbol)

 | escaped double quote symbol

};

integer = "0" | (digit - "0", {digit});

constant = integer,

 [

 dot symbol,

 {digit}-

];

expression = {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {

 {blank},

 operator,

 {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {blank},

 {end group symbol},

 },

 {blank},

 {end group symbol};

member method name = identifier;

identifier = {letter | underscore symbol}-,

 {

 digit

 | letter

 | underscore symbol

 };

operand = {start group symbol},

 {blank},

 (

 string

)

 |

 (

 [

 unary operator

 – (increment operator | decrement operator)

],

 {blank},

 constant

)

 |

 (

 [unary operator],

 {blank},

 rhs selector

)

 |

 (

 rhs selector,

 {blank},

 increment operator | decrement operator

)

 |

 (

 [

 unary operator

 – (increment operator | decrement operator)

],

 {blank},

 member method name,

 {blank},

 start group symbol,

 {blank},

 [

 expression,

 {

 {blank},

 comma symbol,

 expression

 }

],

 {blank},

 end group symbol

),

 {blank},

 {end group symbol};

assignment = {blank},

 lhs selector,

 {blank},

 assignment symbol,

 {blank},

 expression,

 {blank},

 [inline rule],

 {blank},

 end sentence symbol;

basic declaration = {blank},

 lhs selector,

 {blank},

 start declaration symbol,

 {blank},

 modo,

 {blank},

 end declaration symbol;

extended declaration = {blank},

 lhs selector,

 {blank},

 assignment symbol,

 {blank},

 rhs selector,

 {blank},

 start declaration symbol,

 {blank},

 modo,

 {blank},

 end declaration symbol;

lhs identifier = {

 letter

 | underscore symbol

 | hyphens symbol

 }-,

 {

 digit

 | letter

 | underscore symbol

 | hyphens symbol

 };

lhs selector = (

 {blank},

 universal selector | selector operand,

 {blank},

 {

 selector operator,

 {blank},

 selector operand

 }

),

 {

 {blank},

 comma symbol,

 {blank},

 lhs selector

 };

rhs selector = {blank},

 [unary selector operator],

 identifier,

 {rhs selector};

selector operand = {blank},

 [

 [unary selector operator],

 lhs identifier

],

 {blank},

 [

 (

 start group symbol,

 [

 selector expression,

 {

 {blank},

 comma symbol,

 {blank},

 selector expression

 }

],

 {blank},

 end group symbol

)

 |

 (

 start attribute selector symbol,

 selector expression,

 {

 {blank},

 comma symbol,

 {blank},

 selector expression

 },

 {blank},

 end attribute selector symbol

)

],

 {selector operand};

selector expression = {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {

 {blank},

 selector expression operator,

 {blank},

 {start group symbol},

 {blank},

 operand | expression,

 {blank},

 {end group symbol},

 },

 {blank},

 {end group symbol};

(**

 * MODO LANGUAGE DEFINITION Part III

 * ----------------------------------

 * Final Modo definition

 *)

modo = {

 directive

 | rule

 | declaration

 | comment

};

grammar

bibliography

Berners-Lee T., Hendler J., Lasilla O., The Semantic Web, Scientific American 284,
34 – 43, 2001

Booch, G., Jacobson, I. and Rumbaugh, J., OMG Unified Modeling Language
Specification, Version 1.3 1st Edition, Object Management Group (OMG), 2000.

Bos, B., Çelik, T., Hickson, I. and Lie, H. W. (Eds.), Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification, W3C Candidate Recommendation 23 April 2009,
World Wide Web Consortium (W3C), http://www.w3.org/TR/CSS2/, Last Access:
02.06.2009.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vanderdonckt,
J., A Unifying Reference Framework for multi-target user interfaces, Interacting
with Computers 15, 289 – 308, 2003.

ECMA-334, C# Language Specification, 4th Edition, ECMA International, 2006.

Heng, B.C.P. and Mackie, R.I., Using design patterns in object-oriented finite
element programming, Computers and Structures 87, 952 – 961, 2009.

Horsburgh, J.S., Tarboton, D.G., Piasecki, M., Maidment, D.R., Zaslavsky, I.,
Valentine, D. and Whitenack, T., An integrated system for publishing environmental
observations data, Environmental Modelling & Software 24, 879 – 888, 2009.

Gosling, J., Joy, B., Steele, G. and Bracha, G., The Java language specification, 3rd
Edition, Addison-Wesley, 2005.

ISO/IEC 14977, Information technology – Syntactic metalanguage – Extended BNF, 1st
Edition, International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC), 1996.

http://www.w3.org/TR/CSS2/

Kernighan, B., and Ritchie, D., The C Programming Language, 1st Edition, Prentice
Hall, 1978.

Kim, K.S., Information seeking on the Web: Effects of user and task variables,
Library & Information Science Research 23, 233 – 255, 2001.

Lam, D. and Swayne, D., Issues of EIS software design: some lessons learned in the
past decade, Environmental Modeling & Software 16, 419 – 425, 2001.

Laporti, V., Borges, M.R.S. and Braganholo, V., Athena: A collaborative approach to
requirements elicitation, Computers in Industry 60, 367 – 380, 2009.

Park, K.S. and Lim and C.H., A structured methodology for comparative evaluation
of user interface designs using usability criteria and measures, International Journal
of Industrial Ergonomics 23, 379 – 389, 1999.

Rau, P.P., Choong, Y. and Salvendy, G., A cross-cultural study on knowledge
representation and structure in human computer interfaces, International Journal
of Industrial Ergonomics 34, 117 – 129, 2004.

Reinhartz-Berger, I. and Sturm, A., Utilizing domain models for application design
and validation, Information and Software Technology 51, 1275 – 1289, 2009.

Schwabe D., Rossi G., An Object Oriented Approach to Web-Based Applications
Design, Theory and Practice of Object Systems 4, 207 – 225, 1998

The Unicode Standard, Version 4.1.0, The Unicode Consortium, Boston, MA,
Addison-Wesley, Available at http://www.unicode.org/versions/Unicode4.1.0/, Last
Access: 02.06.2009, 2003.

Tom, A., Inside C#, Microsoft Press, 2001.

Wirth, N., The Programming Language Pascal, Acta Informatica 1, 35 – 63, 1971.

http://www.unicode.org/versions/Unicode4.1.0/

	Table of contents
	1. Introduction
	1.1. About the document
	1.2. Scope
	1.3. Conformance
	1.4. Credits and Acknowledgement

	2. Motivation
	3. Definitions
	4. Structure and syntax
	4.1. Syntax
	4.1.1. Tokenization
	4.1.2. Characters and case
	4.1.3. Directives
	4.1.4. Rules
	4.1.5. Blocks
	4.1.6. Selectors
	4.1.7. Elements
	4.1.8. Declarations
	4.1.9. Expressions
	4.1.10. Comments

	4.2. Values
	4.2.1. Integers and real numbers
	4.2.2. Strings

	5. Elements
	5.1. Declarations
	5.1.1. Assignments
	5.1.2. Basic declarations
	5.1.3. Extended declarations

	5.2. Using elements
	5.2.1. Member elements
	5.2.2. Accessing member elements

	5.3. Functions and member methods

	6. Selectors
	6.1. Selector syntax
	6.2. Universal Selector
	6.3. Grouping
	6.4. Selector operators
	6.4.1. Unary selector operators
	6.4.2. Binary selector operators

	6.5. Selector operands
	6.6. Selector expressions

	7. Expressions
	7.1. Operators
	7.1.1. Unary operators
	7.1.2. Multiplication operators
	7.1.3. Addition operators
	7.1.4. Shifting operators
	7.1.5. Relational operators
	7.1.6. Equality operators
	7.1.7. Logical AND operator
	7.1.8. Logical XOR operator
	7.1.9. Logical OR operator
	7.1.10. Conditional AND operator
	7.1.11. Conditional OR operator

	7.2. Constants and strings
	7.3. Elements and member elements
	7.4. Functions and member methods

	Appendix A. Grammar
	Appendix B. Bibliography

